
Source Routing with Protocol-oblivious Forwarding
(POF) to Enable Ef cient e-Health Data Transfers

Shengru Li, Daoyun Hu, Wenjian Fang, Zuqing Zhu†
School of Information Science and Technology,

University of Science and Technology of China, Hefei, China
†Email: {zqzhu}@ieee.org

Abstract—It has already been con rmed that software-de ned
networking (SDN) can make the networks more programmable,
adaptive and application aware. However, due to the large-scale
and geographically-distributed nature of wide-area networks
(WAN), the scalability could become a critical issue if we
incorporate SDN for WANs (i.e., realizing SD-WANs). In this
paper, we design and implement a novel network system that can
leverage source routing with the protocol-oblivious forwarding
(POF) to facilitate ef cient e-Health data transfers with low
setup latency. We develop the POF-based source routing protocol
to realize a pipeline based packet processing procedure, which
can replace the table-lookup based approach in traditional SDN
networks and make the forwarding plane more ef cient. The
proposed scheme is demonstrated experimentally, and the results
verify that with it, the ow-tables installed in each core switches
in a POF-controlled SD-WAN can be minimized and the path
setup latency of traf c ows can be reduced signi cantly as well.

Index Terms—Software-de ned network (SDN), Wide area
network (WAN), Protocol-oblivious forwarding (POF)

I. INTRODUCTION
Nowadays, the fast development of data-intensive appli-

cations, such as e-Health, e-Science, e-commerce, etc, has
brought us into the Big Data era [1]. It is known that
certain Big Data applications may generate huge volumes
of data, which needs to be transferred over wide-area net-
works (WANs) for timely processing. For instance, in a tele-
medicine network, the health-monitoring devices worn by a
large population of subscribers can contribute a fair amount
of traf c for real-time processing [2, 3]. As the subscribers
usually locate in a geographically dispersed manner, it would
be challenging to transfer the data to the processing module(s)
with low latency. Hence, both exible architecture and ef cient
protocols are required to achieve exible traf c engineering
in WANs, especially when cloud-based data gathering and
processing are needed [4–9].
Today’s WAN architecture uses distributed traf c engineer-

ing mechanisms to reduce bandwidth congestion, but it has
been proven to be inef cient due to the close coupling of
the control and forwarding planes of the network [10]. In
order to support Big Data applications more ef ciently, WANs
also need a more programmable and adaptive architecture with
effective network control and management (NC&M), which is
similar to the innovation trends in other types of networks [11–
14]. Recently, software-de ned networking (SDN) has been
proposed as a break-through technology that is promising for

the next-generation Internet due to the fact that it decouples
control and forwarding planes of a network and leverages
centralized NC&M to make it more programmable, adaptive
and application-aware [10]. Thanks to the advances on SDN,
the Big Data related traf c can be managed more ef ciently
in WANs. However, due to the large-scale and geographically-
distributed nature of WANs, the scalability could become a
critical issue when incorporating SDN for WANs. Speci cally,
when the traf c volume increases, more and more ow-tables
will be installed in the switches, which can use up their
memory, make the table look-up and traf c scheduling in-
creasingly complex, and increase the communication overhead
signi cantly.
Unfortunately, the aforementioned issue cannot be ad-

dressed properly with the initial implementation of SDN, i.e.,
OpenFlow [15]. This is because OpenFlow de nes protocol-
dependent ow-matching rules, which can lead to repeated
ow-table installations and look-ups in the forwarding plane.
In an OpenFlow-controlled WAN, the interactions between the
switches and OpenFlow controller need to bear a relatively
long communication latency, which is due to the physical
distance between them and intrinsic. Hence, when setting up
a ow by con guring the ow-table on each switch along the
path, the hop-by-hop operation can cause a long setup delay.
Note that, this is especially unwanted for the delay-sensitive
e-Health data transfers that usually operate as mice ows [16].
On the other hand, the increasing volume of ow-tables

could be another killing factor for the software-de ned WAN-
s (SD-WANs). Speci cally, due to its user population, an
OpenFlow-controlled SD-WAN usually needs to deploy a
huge number of ows [17], each of which may require to
install a ow-table on all the switches along the routing path.
Consequently, the switches’ memory space for ow-tables
can vanish quickly [18]. Further more, as pointed out by
[10], most of the commercially-available OpenFlow-enabled
switches cannot achieve a processing throughput of more than
500 Flow Mods per second.
In order to address the issues of OpenFlow mentioned

above, recent researches have considered to enhance the pro-
grammability and exibility of SDN forwarding plane, with
the protocol-oblivious forwarding (POF) technology [19] or
the programming protocol-independent packet processors (P4)
[20]. The basic ideas behind POF and P4 are similar, i.e.,
trying to decouple network protocols from the forwarding

IEEE ICC 2016 SAC E-Health

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

procedure in SDN-enabled switches and make the forwarding
plane recon gurable, programmable and future-proof. More
speci cally, POF develops a protocol-independent instruction
set that allows to express much more exible packet pro-
cessing than the current OpenFlow speci cations [21, 22],
while P4 mainly focuses on designing a high-level network
programming language for protocol innovations. Note that
both approaches have attracted noticeable interests from the
open networking foundation (ONF), and are considered in its
project on protocol-independent forwarding (PIF) [23].
In this paper, we design and implement a novel network

system that can leverage source routing with POF to facilitate
ef cient e-Health data transfers with low setup latency. We
develop the POF-based source routing protocol, and experi-
mentally demonstrate that with the proposed scheme, the ow-
tables installed in each core switches in a POF-controlled
SD-WAN can be minimized. Our experimental results also
indicate that the setup latency of the traf c ows can be
reduced signi cantly. The rest of the paper is organized as
follows. Section II provides a brief survey on the related work.
The operation principle of POF is introduced in Section III.
Then, we describe our design of POF-based source routing in
Section IV, and the experimental demonstrations are discussed
in Section V. Finally, Section VI summarizes the paper.

II. RELATED WORK

In order to address the performance issues of SD-WANs,
people have proposed a few approaches. The authors of [24]
proposed the scheme of HyperFlow, which utilizes a logically
centralized but physically distributed control plane to enhance
the performance of OpenFlow-enabled SDN networks. In the
same direction, Dixit et al. [25] designed and implemented an
elastic architecture to coordinate distributed SDN controllers
for reducing the setup latency in SD-WANs. However, it is
known that in order to keep the network status consistent
among the distributed controllers, complicated synchronization
scenarios have to be implemented [26], while the approaches
mentioned above did not address the increased operational
complexity due to the status synchronization. Therefore, the
ef ciency of NC&M would be impacted.
On the other hand, researchers have also considered to

reduce the interactions between the control and forwarding
planes. In [27], an architecture named as KeyFlow was pro-
posed, which leverages a residue numeral system (RNS) to
make a forwarding device ow-stateless. Nevertheless, the
approach requires each switch to equip the special reminder
operation in its hardware, and moreover, the network archi-
tecture can hardly adapt to dynamic topology changes. The
authors of [28] considered the OpenFlow-based source routing
approach. Speci cally, in each packet, the scheme encapsulates
a series of output ports in one or more header elds supported
by OpenFlow (e.g., VLAN header, MPLS label, etc), to
represent the routing path and the forwarding action on each
hop along it. Then, on the routing path, each OpenFlow switch
will extract its forwarding action in sequence (i.e., matching to
the corresponding eld that contains its output port) to direct

the packet to its destination. Hence, multiple ows can share
the same ow-table in a core switch, if their forwarding actions
use the same output port. Nevertheless, the proposed source
routing approach is still protocol-dependent, which means that
the de nition of the output port related matching elds needs
to comply with the existing protocols and cannot be adjusted
adaptively for each network. Moreover, with this approach, the
volume of ow-table entries in each core switch still depends
on the maximum number of output ports on a switch. We
believe that this is still sub-optimal, and as we will show later
in this paper, the volume of ow-table entries can be further
reduced with a POF-based approach.

III. POF PRIMER
This section brie y reviews the operation principle of POF

and its ow instruction set (POF-FIS) to provide a context
for the rest of the article. Basically, POF inherits the network
architecture of OpenFlow, i.e., a centralized controller resides
in the control plane to manage the forwarding behaviors
of the switches in the forwarding plane with ow-tables.
However, the innovations provided by POF are the protocol-
oblivious description for ow-matching elds and a set of
generic ow instructions, with which protocol-independent
packet forwarding can be realized easily in the switches.

Fig. 1. Packet forwarding procedure in POF switches.

Fig. 1 shows the packet forwarding procedure used in POF
switches. Speci cally, the switches use a sequence of generic
key assembly and table lookup instructions to accomplish
packet parsing and ow matching. The key concepts regarding
POF are explained as follows.

• Matching Fields: POF simply de nes the search key of
a matching eld as a tuple <offset, length>. Here, offset
indicates the start-location of the eld in a packet (i.e.,
how many bits the packet process pointer should skip
from the beginning of the packet to locate the eld), while
length tells the eld’s length in bits [19].

• POF-FIS: All the instructions in POF-FIS utilize the
tuple <offset, length> to locate the data that they need
to operate on [21]. This provides us the freedom to
manipulate any bit(s) in packets at will, which is far more
exible than the scheme in OpenFlow. For instance, in
the latest OpenFlow switch speci cations (i.e., version
1.5 [15]), the push action is still protocol-speci c and
multiple actions have to be de ned for each legacy
protocol (e.g., push-MPLS, push-PBB, and push-VLAN).

However, all these push actions can be realized with one
generic instruction in POF, which is add- eld. Speci -
cally, by using add- eld, we can insert any eld at any
position in a packet. POF-FIS even includes a calculate-
eld instruction to provide the support on arithmetic and
logical operations.

• Flow Tables: The ow tables stored in a POF-enabled
switch can be classi ed into four types, i.e., the masked-
match (MM) table, the longest-pre x-match (LPM) table,
the extract-match (EM) table, and the direct table (DT).
These types of tables occupy different memory sizes and
can be searched with various table lookup algorithms.
Note that, a ow entry in all the tables consists of both
matching eld(s) and related instruction(s), except for
DT, whose ow entries only include instructions. By
leveraging these tables, the forwarding procedure in a
POF-enabled switch can be abstracted as a data-path
pipeline, and hence the network programmability and
exibility can be improved signi cantly.

• Metadata Memory: When a switch needs to handle mul-
tiple tables in packet forwarding, it uses metadata mem-
ory to store the ow information that the current table
processing generated for the next. POF-FIS de nes three
metadata-related instructions (i.e., write-metadata, write-
metadata-from-packet, and set- eld-from-metadata).

IV. POF-BASED SOURCE ROUTING IN SD-WANS
In this section, we explain the proposed POF-based source

routing for SD-WANs, and describe both the network ar-
chitecture and the forwarding procedure used by the POF-
enabled switches. Fig. 2 shows the network architecture of
a POF-based SD-WAN, which consists of a centralized POF
controller, and core and edge switches. Note that, the edge
switches work as the gateways to peer networks, while the
core switches focus on packet forwarding inside the SD-WAN.

Fig. 2. Network architecture.

A. Packet Design for Source Routing
Thanks to the protocol-independent nature of POF, there

is no need to reuse the header elds in legacy protocols
(e.g., VLAN and MPLS). Basically, the packet elds can
be tailored specially to enable ef cient source routing. Here,
the elds are still designed to store the path information,
and Fig. 3 describes the proposed packet format for POF-
based source routing. Speci cally, the source routing related

header elds are inserted in between Ethernet header and IP
header. Moreover, after inserting the new elds, we modify the
type eld in Ethernet header to “0x0908” to indicate that the
Ethernet frame contains a POF-based source routing packet.
The detailed descriptions on the new elds are as follows.

• Time-to-Live (TTL): This eld occupies 8 bits and indi-
cates the remaining hops for the packet to travel to its
destination in the POF-based SD-WAN. Therefore, the
value of this eld will be set at the ingress edge switch,
and in each subsequent switch, its value is decreased by
1. When the packet is about to leave the POF-based SD-
WAN, the egress edge switch remove it by applying the
del- eld instruction.

• Port: This eld occupies 32 bits1, and its value identi es
an output port on a POF-enabled switch. Note that, a
source routing packet can contain multiple Port elds to
represent the forwarding path, and all the elds form a
Port stack. Each switch pops the rst Port eld (i.e., with
<offset=120 bits, length=32 bits>) from the Port stack to
nd the output port for the packet. This is done by writing
the value of the Port eld to the metadata memory and
removing the eld from the packet, i.e., with the write-
data-from-packet and del- eld instructions, respectively.

Fig. 3. Packet header format designed for POF-based source routing.

B. Procedure for Source Routing based Packet Processing

Figs. 4 and 5 show the principle and detailed procedure of
POF-based source routing, respectively. When the rst packet
of a ow arrives at an ingress edge switch, it triggers a Packet-
In message to be sent to the POF controller, since there is no
ow entries to match against. Upon receiving the Packet-In
message, the controller calculates a routing path for the ow,
and sends a Flow-Mod message to the ingress edge switch,
which encodes the designated output port to use on each switch
along the path. The ingress edge switch stores the output ports
in its metadata memory, and will insert them into every packet
of the ow by using POF-FIS. The subsequent core switches
use a pre-installed pipeline-like matching rule that consists
of multiple ow tables to process the packets, which will be
explained in detail in Fig. 6. Note that, since the forwarding
path is encoded in each packet, the core switches do not need
to have any interactions with the controller, and hence the
setup latency is reduced signi cantly.
POF-FIS enable a lot of functions for the POF-enabled

switches, and thus by leveraging it, we can reduce the pro-
cessing burden on the controller and use source routing to

1The length of the eld is determined according to the Port-ID de ned for
POF-enabled switches [29], as we encode the Port-ID of an output port in
this eld.

Fig. 4. Operational principle of POF-based source routing.

make the data-path much more intelligent. Before explaining
the detailed packet forwarding procedure in the switches, we
introduce several notations to assist the description.

• <offset, length>: the eld starting from offset with length
bits.

• {offset, length}: the value of the eld determined with
<offset, length> in a packet.

• [offset, length]: the value of the eld determined with
<offset, length> in the metadata memory.

Fig. 5. Procedures used by edge and core switches for source routing.

Fig. 6 shows the proposed procedure used to process the
ow tables in a core switch for source routing. We use three
ow tables, including two MM tables and one DT table, to
realize the overall source routing functionality as follows.

• The source routing packet arrives at the switch rst goes
to Table 0, which includes an entry to check the type
eld in its Ethernet header, i.e., with <offset, length>
equals <96 bits, 16 bits>. If its value equals 0x0908, we
determines that it is a source routing packet and should
be sent to Table 1.

• Table 1 is a DT, and the entries in it only include
instructions, as shown in Fig. 6. Here, the switch executes
the write-metadata-from-packet instruction to copy the
value at <120 bits, 32 bits> (i.e., the Port eld to encode
the output port for this hop) to its metadata memory.

• Table 2 includes two entries that are used to determine
whether the switch is the packet’s last hop. Speci cally,
it checks the TTL eld (i.e., <112 bits, 8 bits>). If the

Fig. 6. Procedure used to process the ow tables in core switches for source
routing.

value of the TTL eld equals 1, the switch is the last
hop of this packet and it invokes the del- eld instruction
to delete the whole source routing related elds in the
packet and restore the type eld in the Ethernet header
to its original value (e.g., 0x0800 for an IPv4 packet).
Otherwise, the switch only removes the Port eld for
this hop. The output instruction is then used to forward
the packet to its designated output port (i.e., using the
Port-ID stored in the metadata memory).

Finally, we can see that the overall processing in each
switch behaves like a software program, which veri es the
programmability of POF. Speci cally, the processing on the
ow tables can be considered as functions, whose inputs and
outputs are the elds in the packet and the processed packet,
respectively. The metadata memory provides the support on
saving information in temporary variables. The proposed pro-
cedure makes the switches work as a stand-alone entity for
packet processing and minimizes the interactions between the
control and forwarding planes. Furthermore, the number of
ow tables installed on each core switch is xed as 3, which
is a small constant and does not depends on the maximum
number of output ports on the switches any more. Therefore,
compared with the OpenFlow-based source routing scheme in
[28], our proposed POF-based scheme consumes less memory
on the switches and requires less communication overhead
between the controller and switches.

V. EXPERIMENTAL DEMONSTRATION

In this section, we describe our proof-of-concept demon-
stration to verify the functionality of the proposed POF-based
source routing scheme, and evaluates its performance in terms
of path setup latency.

A. Experiments for Functionality Veri cation
We rst build a POF-based network testbed to verify

the functionality of the proposed POF-based source routing
scheme. The testbed consists of several software-based POF-
enabled switches, which are realized by modifying the open-
source POFSwitch [29] and run its instances on stand-alone
high-performance Linux servers. We also extend the POX
platform [30] to develop a POF controller and also runs it on
a Linux server. Fig. 7 shows the con guration of the testbed
for functionality veri cation, which possesses a line topology
including 4 POF-enabled switch, i.e., two core switches and
two edge switches. Each edge switch connects to an IPv4 host.
We send ICMP Request packets from Host 1 to Host 2, and
capture the packets in the POF-based network with Wireshark.

Fig. 7. Experimental testbed.

An ICMP Request packet rst arrives at edge switch S1,
where it nds that there is no match rules con gured for it.
Then, S1 sends a Packet-In message to the POF controller to
ask for the forwarding policy. The POF controller handles the
Packet-In message, calculates a path together with the output
ports on each hop along it, and instructs edge switch S1 to

(a) ICMP packets captured on edge POF switches.

(b) ICMP packets captured on core POF switches.

Fig. 8. Wireshark captures to verify POF-based source routing.

convert the packets to source routing ones by encoding the
output port information in them.
Fig. 8(a) shows the ICMP packets captured on edge switch

S1. The ICMP Request packet enters the switch from Ethernet
interface eth1, and its designated output port on S1 is eth2.
We observe that the packet is converted to a source routing
one, in which the type eld in its Ethernet header is changed
to “0x0908”. Meanwhile, we notice that the packet’s length
increases from 88 Bytes to 111 Bytes, which also con rms
that one TTL eld (1 Bytes) and three Port elds (12 Bytes)
are inserted into the packet. The ICMP Reply packet from
Host 2 to Host 1 travels in the opposite direction of the
ICMP Request packet. By looking at the type eld in its
Ethernet header, we can also see that the packet is converted to
a source routing one at the edge switch. Meanwhile, since Host
2 sends ICMP Reply to Host 1 to respond to ICMP Request,
we can verify that the egress edge switch of the ICMP Request
packet (i.e., S4) does restore it to a common IPv4 packet.
Fig. 8(b) shows the ICMP packet captured at the Ethernet

interface eth4 of core switch S2. We observe that after passing
one hop, the rst Port eld in the source routing header
has been removed and the value of the TTL eld has been
decreased by 1. The results in Fig. 8(b) indicate that by using
the packet processing procedure in Fig. 6, the core switch can
forward the source routing packets to the designated output
ports successfully.

B. Path Setup Latency

To evaluate the proposed POF-based source routing scheme
further, i.e., without being restricted by the network elements
that we have, we modify Mininet [31] to support POFSwitch.
Then, we emulate the topology in Fig. 7 with Mininet and
increase the number of core switches in the setup to evaluate
the system’s performance on path setup latency. Speci cally, in
each experiment in Mininet, we emulate different numbers of
core switches and measure the path setup latency from Host 1
to Host 2. Note that, to emulate the situation in a practical SD-
WAN, we also generate background traf c in the network. We
use OpenFlow as the benchmark for performance comparison.
Fig. 9 shows the results on path setup latency. We can see

that our proposed POF-based source routing scheme achieves
much shorter path setup latency than the traditional scheme
with OpenFlow. Moreover, it can be observed that the path
setup latency from our proposed scheme does not increase
with the number of switches on forwarding path, while for
OpenFlow, the latency does increase signi cantly. This obser-
vation is crucial to verify that our proposed scheme can t
into the background of large-scale WANs better.
The reason why the POF-based source routing can achieve

these advantages is two-fold. Firstly, since the controller does
not have an unlimited processing capacity, it could be saturated
if there are a lot of Packet-Inmessages for new ows and it has
to respond by sending Flow-mod messages to all the switch
on the forwarding paths. Apparently, this would not be an
issue in our proposed scheme, since the controller only needs
to con gure the edge switches for path setup and does not

Fig. 9. Results on path setup latency.

have any interaction with the core switches. Speci cally, the
three ow tables shown in Fig. 6 can be pre-installed on each
core switch to process any source routing packets. Secondly,
in OpenFlow, the forwarding path can only be established after
the controller has con gured all the switches on it, while our
POF-based source routing scheme only needs to con gure
the ingress and egress edge switches. Hence, the message
propagation time can be saved as well.

VI. CONCLUSION
In this paper, we designed and implemented a novel net-

work system that could leverage source routing with POF
to facilitate ef cient e-Health data transfers with low setup
latency. We developed the POF-based source routing protocol
to realize a pipeline based packet processing procedure, which
could replace the table-lookup based approach in traditional
SDN networks and make the forwarding plane more ef cient.
The proposed scheme was demonstrated experimentally, and
the results veri ed that with it, the ow-tables installed in
each core switches in a POF-controlled SD-WAN could be
minimized and the path setup latency of traf c ows could be
reduced signi cantly as well.

ACKNOWLEDGMENT
This work was supported in part by the NSFC Project

61371117, the Fundamental Research Funds for Central Uni-
versities (WK2100060010), Natural Science Research Project
for Universities in Anhui (KJ2014ZD38), and the Strategic
Priority Research Program of the CAS (XDA06011202).

REFERENCES
[1] P. Lu et al., “Highly-ef cient data migration and backup for big data

applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[2] O. Diallo, J. Rodrigues, M. Sene, and J. Niu, “Real-time query process-
ing optimization for cloud-based wireless body area networks,” Inform.
Sci., vol. 284, pp. 84–94, Nov. 2014.

[3] J. Rodrigues, S. Misra, H. Wang, and Z. Zhu, “Ambient assisted living
communications,” IEEE Commun. Mag., vol. 53, pp. 24–25, Jan. 2015.

[4] S. Li, Z. Zhu, H. Li, and W. Li, “Ef cient and scalable cloud-assisted
SVC video streaming through mesh networks,” in Proc. of ICNC 2012,
pp. 944–948, Jan. 2012.

[5] Z. Bai et al., “Experimental demonstration of SVC video streaming
using QoS-aware multi-path routing over integrated services routers,” in
Proc. of ICC 2013, pp. 2276–2280, Jun. 2013.

[6] Z. Zhu, S. Li, and X. Chen, “Design QoS-aware multi-path provisioning
strategies for ef cient cloud-assisted SVC video streaming to heteroge-
neous clients,” IEEE Trans. Multimedia, vol. 15, pp. 758–768, Jun. 2013.

[7] C. Tsai and J. Rodrigues, “Metaheuristic scheduling for cloud: A
survey,” IEEE Syst. J., vol. 8, pp. 279–291, Mar. 2014.

[8] P. Lu, Q. Sun, K. Wu, and Z. Zhu, “Distributed online hybrid cloud man-
agement for pro t-driven multimedia cloud computing,” IEEE Trans.
Multimedia, vol. 17, pp. 1297–1308, Aug. 2015.

[9] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,” IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[10] D. Kreutz et al., “Software-de ned networking: A comprehensive sur-
vey,” Proc. of the IEEE, vol. 103, pp. 14–76, Jan. 2015.

[11] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” Comput. Commun. Rev., vol. 38, pp. 69–74, Mar. 2008.

[12] S. Li et al., “Flexible traf c engineering (F-TE): When OpenFlow meets
multi-protocol IP-forwarding,” IEEE Commun. Lett., vol. 18, pp. 1699–
1702, Oct. 2014.

[13] W. Lu et al., “Implementation and demonstration of revenue-driven
provisioning for advance reservation requests in OpenFlow-controlled
SD-EONs,” IEEE Commun. Lett., vol. 18, pp. 1727–1730, Oct. 2014.

[14] S. Ma et al., “QoS-aware exible traf c engineering with OpenFlow-
assisted agile IP-forwarding interchanging,” in Proc. of ICC 2015, pp.
8490–8495, Jun. 2013.

[15] OpenFlow Switch Speci cations. [Online]. Available: https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-speci cations/open ow/open ow-switch-v1.5.0.noipr.pdf

[16] S. Shirali-Shahreza and Y. Ganjali, “ReWiFlow: Restricted wildcard
OpenFlow rules,” Comput. Commun. Rev., no. 45, pp. 29–35, Sep. 2015.

[17] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-de ned networking,” IEEE Commun. Mag., vol. 51, pp. 136–
141, Feb. 2013.

[18] M. Rifai, D. Lopez-Pacheco, and G. Urvoy-Keller, “Coarse-grained
scheduling with software-de ned networking switches,” in Proc. of
SIGCOMM 2015, pp. 95–96, Aug. 2015.

[19] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proc. of ACM HotSDN
2013, pp. 127–132, Aug. 2013.

[20] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[21] J. Yu et al., “Forwarding programming in protocol-oblivious instruction
set,” in Proc. of ICNP 2014, pp. 577–582, Oct. 2014.

[22] D. Hu et al., “Design and demonstration of SDN-based exible ow
converging with protocol-oblivious forwarding (POF),” in Proc. of
GLOBECOM 2015, pp. 1–6, Dec. 2015.

[23] OF-PI: A Protocol Independent Layer. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/OF-PI A Protocol Independent Layer
for OpenFlow v1-1.pdf

[24] A. Tootoonchian and Y. Ganjali, “Hyper ow: A distributed control plane
for open ow,” in Proc. of INM/WREN 2010, pp. 3–3, Apr. 2010.

[25] A. Dixit et al., “Towards an elastic distributed SDN controller,” in Proc.
of ACM HotSDN 2013, pp. 7–12, Aug. 2013.

[26] X. Chen et al., “Leveraging master-slave open ow controller arrange-
ment to improve control plane resiliency in SD-EONs,” Opt. Express,
vol. 23, pp. 7550–7558, Mar. 2015.

[27] M. Martinello, M. Ribeiro, R. de Oliveira, and R. de Angelis Vitoi,
“KeyFlow: a prototype for evolving SDN toward core network fabrics,”
IEEE Netw., vol. 28, pp. 12–19, Mar. 2014.

[28] S. Jyothi, M. Dong, and P. Godfrey, “Towards a exible data center fabric
with source routing,” in Proc. of ACM SOSR 2015, pp. 10:1–10:8, Jun.
2015.

[29] POFSwitch Introduction. [Online]. Available: http://www.poforwarding.
org/document/POFSwitch Introduction.pdf

[30] POX. [Online]. Available: https://open ow.stanford.edu/display/ONL/
POX+Wiki#POXWiki-InstallingPOX

[31] Mininet. [Online]. Available: http://mininet.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

